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THE NUMERICAL SOLUTION OF SHALLOW WATER
EQUATION BY MOVING MESH METHODS

Suyeon Shin* and Woonjae Hwang**

Abstract. This paper presents a moving mesh method for solving
the hyperbolic conservation laws. Moving mesh method consists of
two independent parts: PDE evolution and mesh- redistribution.
We compute numerical solution of shallow water equation by using
moving mesh methods. In comparison with computations on a fixed
grid, the moving mesh method appears more accurate resolution of
discontinuities.

1. Introduction

The moving mesh methods have been used for solving differential
equations that involve singular solution. It gives an improvement in
accuracy by moving mesh points that they are concentrate in regions
of larger solution variations. Because of this advantage, many useful
schemes have been applied on moving grids in recent years.

Several moving mesh techniques have been introduced, in which one
of the most advocated methods is the one based on solving elliptic PDEs
first proposed by Winslow [25]. Harten and Hyman [6] began the earliest
study in this direction, by moving the grid along the characteristic direc-
tion to increase the accuracy of solution. After their work, many other
moving mesh methods have been proposed. Salari and Steinberg [13]
developed a FCT method on a moving grid based on adaptive grid
generation algorithms. The moving mesh method based on harmonic

Received June 13, 2012; Accepted June 28, 2012.
2010 Mathematics Subject Classification: Primary 65M50, 76M12; Secondary

35L65.
Key words and phrases: moving mesh, shallow water equation, finite volume meth-

ods, conservation laws,
Correspondence should be addressed to Woonjae Hwang, woonjae@korea.ac.kr.
**Supported by Basic Science Research Program through the National Research

Foundation of Korea(NRF) funded by the Ministry of Education, Science and Tech-
nology(Grant No. 2011-0027131).



564 Suyeon Shin and Woonjae Hwang

mapping was suggested by Dvinsky [4]. His method can be viewed as
a generalization and extension of Winslow’s method. Motivated by the
work of Dvinsky, a moving mesh finite element strategy based on har-
monic mapping was proposed and studied by the Li et al. [9, 10]. The
moving mesh PDEs were studied by Russell et al. [7, 12, 16], and Li
and Petzold [11]. In recent years, there are many works about moving
mesh methods [1, 2, 3, 14, 15, 19, 20, 21, 22, 23, 24]. Adaptive mesh
method consists of two independent parts [9, 19]: a mesh- redistribution
algorithm and a solution algorithm. The first part is an iteration pro-
cedure. Meshes are redistributed by an equidistribution principle. For
the resulting elliptic, adaptive mesh PDEs, a Gauss-Seidel type iteration
method is used. The underlying numerical solution on the new grids are
updated by a conservative-interpolation formula. The second part will
be independent of the first one, and it can be any of the standard codes
for solving the given PDEs.

The organization of this paper is as follows. In Section 2, the moving
mesh method is briefly described. Numerical experiments of the one-
dimensional hyperbolic conservation laws are provided in Section 3.

2. Moving mesh method

In Tang and Tang [19, 24], the basic idea of the moving mesh method
can be summarized by two independent parts: mesh-redistribution and
PDE evolution.

2.1. Mesh-redistribution based on Gauss-Jacobi iteration

Meshes are redistributed by an equidistribution principle. The mesh-
redistribution equation is

(2.1) (wxξ)ξ = 0, 0 < ξ < 1

where the function w is called monitor function [16, 17], which designed
specifically to resolve discontinuous solutions. To solve the mesh redis-
tribution equation (2.1), the following Gauss-Jacobi type iteration can
be used:

(2.2) w(uj+ 1
2
)(xj+1 − x̃j)− w(uj− 1

2
)(x̃j − xj−1) = 0,

and then the underlying numerical solution on the new grids {x̃j+ 1
2
}

are updated by a conservative-interpolation formula. The conservative-
interpolation formula is following:

(2.3) ∆x̃j+ 1
2
ũj+ 1

2
= ∆xj+ 1

2
uj+ 1

2
− ((cu)j+1 − (cu)j),
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where ∆x̃j+ 1
2

= x̃j+1−x̃j . The linear flux cu in (2.3) is approximated by
second-order numerical flux. The second-order numerical flux is defined
by

(2.4) (cu)j =
cj

2
(u+

j + u−j )− |cj |
2

(u+
j − u−j ).

The wave speed cj above is defined by cj = xj − x̃j . In (2.4), un,±
j are

defined by

(2.5) un,±
j = un

j± 1
2

+
1
2
(xj − xj±1)S̃j± 1

2
,

where S̃j+ 1
2

is an approximation of the slope ux at xj+ 1
2
. S̃j+ 1

2
is defined

by

(2.6) S̃j+ 1
2

= (sign(S̃+
j+ 1

2

) + sign(S̃−
j+ 1

2

))
|S̃+

j+ 1
2

S̃−
j+ 1

2

|
|S̃+

j+ 1
2

|+ |S̃−
j+ 1

2

| ,

with

(2.7) S̃+
j+ 1

2

=
un

j+ 3
2

− un
j+ 1

2

xj+ 3
2
− xj+ 1

2

, S̃−
j+ 1

2

=
un

j+ 1
2

− un
j− 1

2

xj+ 1
2
− xj− 1

2

.

The equation (2.5)∼(2.7) are the MUSCL(monotone upstream-centered
scheme for conservation laws)-typed finite volume method. The new grid
procedure by the Gauss-Jacobi type iteration and the updated solution
procedure using the conservative-interpolation are repeated for a fixed
number of iterations or untill ‖x[υ+1] − x[υ]‖ ≤ ε.

2.2. PDE evolution

The mesh redistribution is based on an iteration procedure and the
PDE evolution is independent of the first part. It can be solved by using
any high resolution finite volume methods. In this paper, a second-order
finite volume scheme with a numerical flux is the Lax-Friedrichs flux:

(2.8) f̂(a, b) =
1
2
[f(a) + f(b)−maxu{|fu|}(b− a)].

The details can be found in Tang and Tang [19].
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3. Numerical experiments

In this section, we consider the one-dimensional hyperbolic conserva-
tion laws

(3.1) ut + f(u)x = 0, t > 0.

As a scalar model, we consider Buckley - Leverett equation. For a sys-
tem model, we consider the shallow water equation [5, 18]. We consider
the Riemann problem for both equations. Some details are the following:
the number of Jacobi iterations is 5; the scheme for evolving this equa-
tion is a (formally) second-order MUSCL finite volume scheme (with
the Lax-Friedrichs flux) together with a second-order Runge-Kutta dis-
cretization; the CFL number used is 0.3.

Example 3.1. We consider Buckley-Leverett problem [8],

(3.2) ut + f(u)x = 0, f(u) =
u2

u2 + a(1− u)2
, a = 0.5.

The initial data are

u(x, 0) =

{
1 if x < 0
0 if x > 0.

This may be used to model gas and oil in a reservoir, where u is the
fluid saturation(water). This flux is nonconvex with a single inflection
point. The characteristic speed is f ′(u) = 2au(1−u)

[u2+a(1−u)2]2
. By follow-

ing characteristics, we can construct the triple-valued solution. By the
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Figure 1. (a) Numerical solutions by MUSCL, (b) Nu-
merical solutions by MUSCL with MMM (J=50).
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equal-area rule, this triple-valued solution replaced a shock. Thus Rie-
mann solution involves both a shock and a rarefaction wave and is called
a compound wave.
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Figure 2. (a),(b), and (c) show numerical solutions by
MUSCL with MMM of monitor parameter 1, 10, and 20,
respectively. (a’),(b’), and (c’) show mesh trajectories of
monitor parameter 1, 10, and 20, respectively. (J=50)
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Figure 1 (a) and (b) show the numerical solutions at t = 0.5 for
uniform grid and nonuniform grid, respectively obtained with the num-
ber of grids J = 50. The monitor function used in the computation is
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Figure 3. Height: (a),(b), and (c) show numerical so-
lutions by MUSCL of J = 50, 75, and 100, respectively.
(a’),(b’), and (c’) show numerical solutions by MUSCL
with MMM of J = 50, 75, and 100, respectively.
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w =
√

1 + 10|uξ|2. In this example, the monitor function is taken as
w =

√
1 + β|uξ|2, β > 0 where several values of β are used. In Fig-

ure 2, the numerical solution and mesh trajectories with three different
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Figure 4. Velocity: (a),(b), and (c) show numerical so-
lutions by MUSCL of J = 50, 75, and 100, respectively.
(a’),(b’), and (c’) show numerical solutions by MUSCL
with MMM of J = 50, 75, and 100, respectively.
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monitor functions(β = 1, 10, 20) are plotted. It is observed that the grid
distributions seem more reasonable, with more points where the value of
curvature is large. However, we avoid clustering too many points in the
neighborhood of the discontinuities. Thus parameter β = 10 of monitor
function is efficient choice. Obviously, the study on how to choose the
monitor constants seems very useful. In principle, the monitor function
w can be any appropriately chosen measure of the numerical error in
the solution of the PDE. At points where the error is large, w should
also be large so that mesh points will tend to concentrate in those areas
where higher resolution is needed.
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Figure 5. (a), (b), and (c) show mesh trajectories for J
= 50, 75, and 100, respectively.
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Example 3.2. We apply moving mesh algorithm to the one-dimensional
shallow water equations,(

h
hu

)

t

+
(

hu
hu2 + 1

2gh2

)

x
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Figure 6. Height: (a),(b), and (c) show numerical so-
lutions by MUSCL of J = 20, 40, and 80, respectively.
(a’),(b’), and (c’) show numerical solutions by MUSCL
with MMM of J = 20, 40, and 80, respectively.
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where h, u and g are height, velocity and gravitational constant, respec-
tively. Consider the shallow water equation with the piecewise-constant
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Figure 7. Velocity: (a),(b), and (c) show numerical so-
lutions by MUSCL of J = 20, 40, and 80, respectively.
(a’),(b’), and (c’) show numerical solutions by MUSCL
with MMM of J = 20, 40, and 80, respectively.
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initial data

h(x, 0) =

{
3 if x < 0
1 if x > 0,

u(x, 0) = 0.

This is special case of the Riemann problem in which ul = ur = 0, and
is called the dam-break problem because it models what happens if a
dam separating two levels of water bursts at time t = 0.

Figures 3 and 4 show the solutions of height and velocity, respectively
at t = 0.5 for uniform and nonuniform grid, obtained with J = 50,
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Figure 8. (a), (b), and (c) show mesh trajectories for J
= 50, 75, and 100, respectively.
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Figure 9. Height: (a),(b), and (c) show numerical so-
lutions by MUSCL with MMM of monitor parameter 1,
10, and 100 respectively. (a’),(b’), and (c’) show mesh
trajectories of monitor parameter 1, 10, and 100, respec-
tively. (J=40)
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J = 75, and J = 100. Figure 5 shows the trajectories of the grid points
at t=0.5, obtained with J=50, J=75, and J=100. In this example, the
monitor function used in the computation is w =

√
1 + 100( |hξ|

maxξ|hξ|)
2.

Example 3.3. Consider the shallow water equation with the piecewise-
constant initial data

h(x, 0) = 1,

u(x, 0) =

{
1 if x < 0
−1 if x > 0.

The solution is symmetric in x with h(−x, t) = h(x, t) and u(−x, t) =
−u(x, t) at all times. A shock waves moves in direction, bringing the
fluid to rest, since the middle state must have um = 0 by symmetry.

Figures 6 and 7 show the solutions of height and velocity, respectively
at t = 1 for uniform and nonuniform grid, obtained with J = 20, J = 40,
and J = 80. Figure 8 shows the trajectories of the grid points at t=1,
obtained with J=20, J=40, and J=80. In this example, the monitor
function used in the computation is w =

√
1 + 10( |uξ|

maxξ|uξ|)
2. In this

example, the monitor function is taken as w =
√

1 + β( |uξ|
maxξ|uξ|)

2, β > 0
where several values of β are used. In Figure 9, the mesh trajectories and
numerical solution with three different monitor functions(β = 1, 10, 100)
are plotted.
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